Today's Clinical Lab - News, Editorial and Products for the Clinical Laboratory
Abstract futuristic pills wireframe and capsule on glowing blue background
Shape-shifting antibiotics are a new class of antibiotics designed to fight multi-drug resistant bacteria, which cause rather fatal infections if left untreated.

Shape-Shifting Antibiotics to Combat Drug-Resistant Bacteria

Click chemistry can help design a wide range of shape-shifting antibiotics that may effectively combat multi-drug resistant bacteria

Cold Spring Harbor Laboratory
Published:Apr 05, 2023
|2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00

In the United States alone, drug-resistant bacteria and fungi infect almost 3 million people per year and kill about 35,000. Antibiotics are essential and effective, but in recent years overuse has led to some bacteria developing resistance to them. The infections are so difficult to treat, the World Health Organization deemed antibiotic resistance a top 10 global public health threat.

Now, John E. Moses, PhD, professor at Cold Spring Harbor Laboratory (CSHL) has created a new weapon against these drug-resistant superbugs—an antibiotic that can shape-shift by rearranging its atoms.

What are shape-shifting antibiotics? How do they work? 

Moses came up with the idea of shape-shifting antibiotics while observing tanks in military training exercises. With rotating turrets and nimble movements, the tanks could respond quickly to possible threats.

A few years later, Moses learned of a molecule called bullvalene. Bullvalene is a fluxional molecule, meaning its atoms can swap positions. This gives it a changing shape with over a million possible configurations—exactly the fluidity Moses was looking for.

Several bacteria, including MRSAVRSA, and Vancomycin-resistant Enterococcus (VRE), have developed resistance to a potent antibiotic called vancomycin, used to treat everything from skin infections to meningitis. Moses thought he could improve the drug’s bacteria-fighting performance by combining it with bullvalene.

He turned to click chemistry, a Nobel Prize–winning class of fast, high-yielding chemical reactions that “click” molecules together reliably. This makes the reactions more efficient for wide-scale use. “Click chemistry is great,” says Moses, who studied this revolutionary development under two-time Nobel laureate Karl Barry Sharpless, PhD. “It gives you certainty and the best chance you’ve got of making complex things.”

Designing a shape-shifting antibiotic with bullvalene

Using this technique, Moses and his colleagues created a new antibiotic with two vancomycin “warheads” and a fluctuating bullvalene center.

Moses tested the new drug in collaboration with Tatiana Soares da-Costa, PhD, of the University of Adelaide. The researchers gave the drug to VRE-infected wax moth larvae, which are commonly used to test antibiotics. They found the shape-shifting antibiotic significantly more effective than vancomycin at clearing the deadly infection. Additionally, the bacteria didn’t develop resistance to the new antibiotic.

Researchers can use click chemistry with shape-shifting antibiotics to create a multitude of new drugs, Moses explains. Such weapons against infection may even be key to our species’ survival and evolution. “If we can invent molecules that mean the difference between life and death,” says Moses, “that’d be the greatest achievement ever.”

- This press release was originally published on the Cold Spring Harbor Laboratory website