Today's Clinical Lab - News, Editorial and Products for the Clinical Laboratory
A transparent bottle with white powder, labeled Fentanyl, lays open with two more such bottles in the background.
More than 150 people die every day from overdoses related to synthetic opioids like fentanyl.
iStock, designer491

Novel Biosensor Detects Fentanyl in Urine in Seconds

First-of-its-kind electrochemical test can detect trace amounts with 98 percent accuracy

University of Texas at Dallas
Published:Feb 05, 2024
|2 min read
Register for free to listen to this article
Listen with Speechify

University of Texas at Dallas (UT Dallas) researchers have developed a first-of-its-kind, handheld electrochemical sensor that can accurately detect fentanyl in urine within seconds. The proof-of-concept technology can detect even trace amounts of fentanyl with 98 percent accuracy using a small portable device without expensive and time-consuming lab analysis. A study demonstrating the device was published recently in the ACS Applied Materials & Interfaces.

The prototype, which could be used to test for fentanyl via urinalysis, is a precursor to a test to detect the drug in saliva, said Shalini Prasad, PhD, professor and department head of bioengineering in the Erik Jonsson School of Engineering and Computer Science, UT Dallas. The technology also could be used to test substances for fentanyl by mixing a sample with water and dropping the liquid onto the sensor.

“There is an urgent demand for an easy-to-use, portable, miniaturized device that can detect fentanyl with high specificity and share results immediately to an internet-connected device,” said Prasad, corresponding author of the study and a Cecil H. and Ida Green Professor in systems biology science. “Our study demonstrates the feasibility of a highly accurate sensor to detect fentanyl within seconds.”

What is fentanyl?

Fentanyl is a synthetic opioid 50 times more potent than heroin and 100 times more potent than morphine, according to the Centers for Disease Control and Prevention. Illegally made fentanyl is commonly mixed with other drugs, and an amount as small as 2 mg—equal to 10 to 15 grains of table salt—can be lethal. More than 150 people die every day from overdoses related to synthetic opioids like fentanyl.

Research has determined fentanyl is detectable in urine for up to 72 hours. UT Dallas researchers are working to advance the technology to detect fentanyl in hair. Their ultimate aim is to develop a test to detect fentanyl in saliva. A saliva test could help first responders make treatment decisions for someone who has overdosed, Prasad said.

The device contains an electrochemical sensor, which generates electrical signals based on chemical reactions. Developing a sensor to detect fentanyl posed a challenge, however, because the synthetic opioid is a nonvolatile compound, which means it does not produce an electrochemical signature.

To capture fentanyl with an electrochemical sensor, researchers used a molecular cage-like structure they compared to a mousetrap. The trap consists of several substances, including gold nanoparticles. For the “cheese,” researchers had to get creative.

Designing a mousetrap

Bioengineering researcher Dr. Anirban Paul, the first author of the paper, used reverse engineering to find a solution. Paul decided to try using naloxone, a lifesaving medication that can reverse an opioid overdose. The researchers conducted computational tests to understand how the compounds interact so they could determine how to deploy naloxone to draw fentanyl to it like a magnet.

Researchers tested urine from a lab that was spiked with low, medium, and high levels of fentanyl. The urine is dropped onto a test strip. If the drug is present, the naloxone interacts with it and generates a signal. The device detected fentanyl up to 100 parts per million in spiked urine samples. 

Ivneet Banga, PhD, study author and a research project manager in bioengineering, helped plan the experiments and synthesize the materials, said she hopes the fentanyl sensor can help prevent deaths from overdoses.

- This press release was originally published on the University of Texas at Dallas website