Today's Clinical Lab - News, Editorial and Products for the Clinical Laboratory
Photo of J. Julius Zhu, PhD, sitting at the new biosensor microscope at his lab at the University of Virginia Health System.

New Brain Sensor Offers Alzheimer's Answers

The new sensor could help facilitate the development of new treatments

University of Virginia Health System
Published:Mar 10, 2021
|2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00

Scientists at the University of Virginia School of Medicine have developed a tool to monitor communications within the brain in a way never before possible, and it has already offered an explanation for why Alzheimer's drugs have limited effectiveness and why patients get much worse after going off of them.

The researchers have described new approach and their findings in the scientific journals Molecular Psychiatry and Nano Letters.

The researchers expect their new method will have tremendous impact on our understanding of depression, sleep disorders, autism, neurological diseases, and major psychiatric conditions. It will speed scientific research into the workings of the brain, they say, and facilitate the development of new treatments.

"We can now 'see' how brain cells communicate in sharp detail in both the healthy and diseased brains," said lead researcher J. Julius Zhu, PhD, of the University of Virginia’s (UVA) Department of Pharmacology.

J. Julius Zhu, PhD, and colleagues have found an explanation for why Alzheimer's drugs have limited effectiveness and why patients get much worse after going off of them.
Dan Addison | UVA Communications

Unexpected transmissions

The new method developed by Zhu and his collaborators lets scientists examine transmissions inside the brain at both the microscopic level and the far, far smaller nanoscopic level. It combines a biological "sensor" with two different forms of cutting-edge imaging.

The approach can quantify "neuromodulatory" transmissions, which are associated with major brain disorders, including addiction, Alzheimer's, depressive disorders, and schizophrenia. They're also linked to autism, epilepsy, eating disorders, and sleep disorders.



Related Article: NGS Approaches for Diagnosing Neurological Diseases


Neuromodulatory transmissions are the "slower" transmissions in the brain. They're typically thought to involve lots of neurons in large regions. That's in contrast to the much faster transmissions that happen neuron-to-neuron.

But Zhu's new tool has already shown it's not that simple.

In Alzheimer's disease, Zhu and his colleagues discovered a surprising degree of "fine control and precision" in the supposedly shotgun neuromodulatory transmissions. Widely used Alzheimer's drugs known as acetylcholinesterase inhibitors may inhibit this precise communication, the scientists report. That may explain the limited effectiveness of the drugs, they say.

The researchers went on to identify potential changes in the brain that could be brought about by long-term use of the drugs, which could explain why patients often get much worse when they stop taking them. "The new method points out Alzheimer's defects in the unprecedented spatial and temporal resolution, defining the precise targets for medicine," Zhu said.

Alzheimer's, the researchers say, is just the tip of the iceberg. The new system has "broad applicability" across the spectrum of neurological and psychiatric diseases and disorders, they report. In the years to come, the scientists predict, it will help doctors understand neurological illnesses and psychiatric problems, screen drugs for potential treatments, identify disease-causing genes and develop better, more personalized medicine tailored for specific patient needs.

"If we see problems," Zhu said, "we will be ready to treat them."

- This press release was originally published on the University of Virginia news website