Today's Clinical Lab - News, Editorial and Products for the Clinical Laboratory
A sick old man coughing and getting medical attention from a female doctor in a doctor's office.
Tuberculosis is caused by mycobacteria, which are naturally more treatment-resistant, in part due to their slow growth rate.

Molecular Insights into New Treatments for Drug-Resistant TB

Research advances the search for new medications to treat antibiotic-resistant infections

The Hospital for Sick Children

The Hospital for Sick Children (SickKids), affiliated with the University of Toronto, is Canada's most research-intensive hospital and the largest centre dedicated to improving children's health in the country.

ViewFull Profile
Learn about ourEditorial Policies.
Published:Jun 29, 2023
|2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00

Tuberculosis (TB), an infection that primarily affects the lungs, is the most common cause of death by infectious diseases worldwide. Although antibiotics have been the mainstay of treatment, the emergence of drug-resistant TB strains means that antibiotics used since the 1950s and 60s sometimes do not work and new treatments are needed. 

In a study published in The EMBO Journal, a research team led by John Rubinstein, PhD, senior scientist in the Molecular Medicine program, and first-author Gautier Courbon, a PhD candidate in the Rubinstein Lab, examined how two new compounds attack the bacteria that cause TB, providing insights that may inform future drug therapies. 

“New treatments for TB are frequently tested, but the mechanisms behind their success, or failure, are not always understood,” says Rubinstein. “By determining structures of candidate drugs bound to their targets and identifying how these compounds work on a molecular level, we hope to help inform future therapies.” 

Exploring new compounds to reduce side effects 

TB is caused by mycobacteria and compared to most other bacteria, mycobacteria are naturally more treatment-resistant, in part due to their slow growth rate. Mycobacterial growth relies on aerobic respiration and uses the enzyme, adenosine triphosphate (ATP) synthase, to convert the energy into a form that bacteria can use.  

The current treatment for drug-resistant TB relies on a recently developed drug called bedaquiline (BDQ), which targets ATP synthase, effectively stopping the bacteria from producing the energy they need to survive. 

Despite the success of BDQ in treating drug-resistant TB, resistant mycobacteria have started to emerge and its side effects can include liver toxicity and heart failure, prompting scientists to seek out effective treatments with fewer side effects.  

The research team, led by Rubinstein, used state-of-the-art imaging at the SickKids High-resolution high-throughput CryoEM core facility to examine two new compounds that target ATP synthase, called TBAJ-876 and SQ31f.

Unveiling new avenue to attack TB infections 

The study showed why TBAJ-876—derived from BDQ and currently undergoing clinical trials—binds to ATP synthase better than BDQ. The team also discovered that although the current form of SQ31f prevents mycobacteria from growing but does not kill them, it binds to ATP synthase at a previously unknown site, which could allow the development of an entirely new class of antibiotic that works against even BDQ-resistant strains. 

“Unlike BDQ and TBAJ-876, SQ31f binds a previously unknown site on ATP synthase,” explains Rubinstein. “This could represent an entirely new avenue to attack mycobacterial infections.” 

In addition to informing the development of TBAJ-876 and SQ31f, these findings also offer fresh insights into the molecular mechanisms that make some ATP synthase inhibitors more effective at killing mycobacteria than others. By better understanding these mechanisms, the research could be used to support the development of new therapeutic strategies in the future to combat TB and other mycobacterial infections, including those that affect patients with depressed immune systems or cystic fibrosis. The research team is optimistic that their contributions will help inform future treatments for patients with TB.

- This press release was originally published on The Hospital for Sick Children (SickKids) website