Today's Clinical Lab - News, Editorial and Products for the Clinical Laboratory
Shio Kobayashi, PhD, a research specialist in the Kuhns Lab, leaning over a bucket of ice holding a small tube

Genetically Engineered T Cells Could Lead to Therapies for Autoimmune Diseases

The engineered T cells can target and attack pathogenic T cells in a mouse model of Type 1 diabetes

University of Arizona Health Sciences
Published:Dec 04, 2020
|3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Shio Kobayashi, PhD, is a research specialist in the Kuhns lab and first author on the paper that was published in the Proceedings of the National Academy of Sciences.
University of Arizona Health Sciences, Noelle Haro-Gomez

A new study has found that a novel T cell genetically engineered by University of Arizona Health Sciences researchers is able to target and attack pathogenic T cells that cause Type 1 diabetes, which could lead to new immunotherapy treatments.

The immune system fights bacteria, viruses, and other pathogens by utilizing several types of T cells, all of which have receptors that are specific to particular antigens. On killer T cells, the receptor works in concert with three signaling modules and a coreceptor to destroy the infected cell. Michael Kuhns, PhD, an associate professor in the University of Arizona College of Medicine – Tucson Department of Immunobiology, copied the evolutionary design to engineer a five-module chimeric antigen receptor, or 5MCAR, T cell.

"The 5MCAR was an attempt to figure out if we could build something by biomimicry, using some of evolution's natural pieces, and redirect T cells to do what we want them to do. We engineered a 5MCAR that would direct killer T cells to target autoimmune T cells that mediate Type 1 diabetes," said Kuhns, who is member of the University of Arizona Cancer Center, BIO5 Institute, and Arizona Center on Aging. "So now, a killer T cell will actually recognize another T cell. We flipped T cell-mediated immunity on its head."

Kuhns worked with Thomas Serwold, PhD, of the Harvard Medical School-affiliated Joslin Diabetes Center, to test the 5MCAR T cells in a non-obese diabetic mouse model with promising results. The findings recently were published in the Proceedings of the National Academy of Sciences.

"When we saw that the 5MCAR T cells completely eliminated the harmful T cells that invaded the pancreas, we were blown away," Serwold said. "It was like they hunted them down. That ability is why we think that 5MCAR T cells have tremendous potential for treating diseases like Type 1 diabetes."


Related Article: Clinical Spatial Genomics: From Gene Lists to Genetic Maps 


In 2017, the U.S. Food and Drug Administration approved two chimeric antigen receptor (CAR) T cell therapies for specific types of cancer—one for the treatment of children with acute lymphoblastic leukemia and the other for adults with advanced lymphomas. Those CAR T cells focused solely on the receptor, not the surrounding signaling modules or coreceptor.

Kuhns believes that by mimicking the form and function of a natural T cell, including its complex five-module structure, researchers will be able to more specifically target antigens with greater sensitivity in the future. This type of personalized immunotherapy is a key initiative of the University of Arizona Health Sciences, as well as a focus of Kuhns's lab.

The illustration on the left represents a natural T cell, which was the inspiration behind the genetically engineered 5MCAR T cell, represented by the illustration on the right.
Courtesy of Michael Kuhns, PhD

"I'm generally of the belief that evolution converges on related principles to execute related tasks," Kuhns said. "Basic research from labs around the world, including ours, has helped us to understand the complex structure and function of the five-module molecular machines that have evolved to drive T cell responses. We think these results show that a biomimetic approach holds promise for CAR engineering."

Kuhns and Serwold recently received a bridge grant from the National Institute of Allergy and Infectious Diseases to continue their research into using 5MCAR T cells to prevent autoimmune disease.

"There are many things we don't yet know about this technology," Kuhns said. "What we know is that it works, and it can be very effective in a mouse model of Type 1 diabetes, so that's great. Now, we have a lot more work to do."

- This press release was originally published on the University of Arizona Health Sciences news website