Today's Clinical Lab - News, Editorial and Products for the Clinical Laboratory
3D illustration of a Malignant cancerous cell with vasculature
Researchers discovered that both epithelial and mesenchymal cancer cells were present in metastatic biopsies, however, only the epithelial cells initiated new metastases in experimental models.
iStock, wildpixel

Cancer Cells Employ Plasticity to Metastasize Aggressively

Interplay between proteins drives the epithelial-mesenchymal transition in breast cancer cells

Ruhr-Universität Bochum
Published:Jun 07, 2023
|2 min read
Register for free to listen to this article
Listen with Speechify

For most types of cancer, the primary tumor is not the cause of death, it’s the metastasis. Metastatic progression is a complex cascade of steps, and there can be a significant delay between the initial spread and subsequent growth, eventually destroying vital organs, such as the lung, liver, or brain. Researchers from the Skin Tumor Center at Ruhr University Bochum, the Helmholtz Center Munich, the German Cancer Center Heidelberg, and the ETH Zurich have studied the properties of metastatic breast cancer cells by directly analyzing metastatic biopsies from patients.

Cells change their identity

They initially focused on the activation of a cellular program that has long been implicated in metastasis, the epithelial-mesenchymal transition (EMT). In experimental settings, the activation of this program has been shown to change the identity of cancer cells, such as breast or certain types of skin cancer, thereby rendering these epithelial cancer cells more motile through the adoption of properties of mesenchymal cells, such as fibroblasts.

Importantly, the researchers discovered that both epithelial and mesenchymal cancer cells were present in metastatic biopsies. However, only the epithelial cells propagated the disease and initiated new metastases in experimental models.

“There are still conflicting data on the exact role of EMT in metastasis,” said Christina Scheel, MD, one of the senior authors. “We think our discovery has the potential to unify many of them by describing a new mechanism at play.” Specifically, the researchers then employed a series of molecular analyses to discover a global epigenetic program in breast cancer cells that determined whether these cells were able to hold on to their epithelial identity upon activation of EMT or become completely reprogrammed to a mesenchymal cell state. The latter process was associated with a lack of growth potential. 

Finally, the authors describe that the interplay between two proteins, the transcription factors ZEB1 and GRHL2, determined which route breast cancer cells take upon activation of EMT. 

This work reveals at the molecular level how cancer cells employ plasticity—the ability to change fundamental properties—to adopt properties that promote metastatic growth. In the future, it will be highly interesting to determine to what extent these observations can be transferred to other epithelial cancers and also, whether these insights can be used to target the most aggressive cancer cells therapeutically.

- This press release was originally published on the Ruhr-Universität Bochum website